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Formulations for a general theory of thermoelasticity to generate accurate thermal stresses for structural
members of aeronautical vehicles were developed in 1954 by Boley. The formulation also provides three
normal stresses and a shear stress along the entire length of the beam. The Poisson effect of the lateral and
transverse normal stresses on a thermally loaded beam is taken into account in this theory by employing an
Airy stress function.  The Airy stress function enables the reduction of the three-dimensional thermal stress
problem to a two-dimensional one.  Numerical results from the general theory of thermoelasticity are
compared to those obtained from strength of materials. It is concluded that the theory of thermoelasticity for
prismatic beams proposed in this paper can be used instead of strength of materials when precise stress
results are desired.
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1. Introduction

Thermal stresses have traditionally been analyzed
by using strength of materials [1].  It is the contention
here that this approach may produce an error that could
be significant to a design engineer.  Engineers not only
need tools to determine accurate thermal stresses, but
also need to know when to use these tools [2]. The
difficulty in evaluating the Airy stress function, and
the relatively small effect of the terms containing the
function on the final thermal stress in thin aeronautical
structural members, resulted in the Airy stress function
being ignored in the calculations.  With the aid of
finite elements and computational tools, the previously
neglected Airy Stress function in Boley’s elasticity
theory of thermal stresses can be implemented [1]. The
objectives of this paper are to present a new general
theory of thermoelasticity for prismatic beams, present
results from applying the theory, and determine a set of
criteria for the use of the theory by interpreting the
results.

2. Thermoelasticity

The elasticity theory of thermal stresses presented
in this paper originates from Boley’s Theory of
Thermal Stresses [3].  The equation for the normal
stress induced by a temperature change is derived by
using general thermoelastic equations, the force
method, and a semi-inverse method.  

The ends of the beam and lateral surfaces are
considered to be traction free.  The temperature along

the span (x-direction) varies linearly and can be
arbitrary over the cross-section (y and z-directions); i.e.,

                 T x,y,z( ) = T 1 y,z( ) + xT 2 y,z( ) (1)

where T is the temperature, x, y, and z are the
longitudinal, lateral, and transverse axes.  A theory of
independent cross-sectional planes of stress for
prismatic beams developed by Voigt and contained in
Refs. [4, 5, 6] is applied.  With this theory, the
following stress field is assumed for a prismatic beam
with the temperature distribution given by eqn. (1)

         ′ ′ σ xx = ′ ′ σ yy = ′ ′ σ zz = ′ ′ σ yz = ′ ′ σ xy = ′ ′ σ xz = 0 (2)

The primes indicate differentiation with respect to x.
The equilibrium and compatibility equations are used
to obtain an expression for the normal stress.  The
expression for the normal stress is derived if an Airy
stress function φ x, y, z( )  linear in the x-direction is

introduced as follows

                   φ x,y,z( ) = φ1 y,z( ) + xφ 2 y,z( ) (3a)

The Airy stress function defines the stresses on the
cross-section as

      σyy =
∂2φ
∂z 2

      σyz =−
∂2φ

∂y∂z
      σzz =

∂2φ
∂y 2

(3b)

The materials analyzed are isotropic,
homogeneous, linearly elastic, and continuous (no
holes along the axis).  Utilizing Boley’s theory [3],
where the outer surfaces of the beam are considered
traction free, and following the derivation by Pilkey
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and Liu [1], the boundary conditions for φ  are
obtained as

                φ = 0          
∂φ
∂n

= 0          on   S (4)

where S is the surface of the beam and n is a vector
perpendicular to S.  A relationship for φ  and the
temperature distribution is obtained if three of the
thermal-stress compatibility equations are used; i.e.,

                     ∇4φ = −
E∇ 2T
1− ν

          in   R (5a)

where R is the cross-sectional surface of the beam and

                        ∇2 =
∂2

∂y2
+

∂2

∂z 2
(5b)

Equation (5a) with the boundary conditions of eqn. (4)
are analogous to the equations for bending of a plate
with clamped edges, that is given by,

             wo = 0          
∂wo

∂n
= 0          on   S (6)

on the plate boundary

                   ∇4 wo = −
p

D
         in    R (7)

in the plate interior, where   wo  is the plate deflection, p
is the transverse surface load on the plate and D is the
plate bending rigidity.  Hence, a general-purpose finite
element code with plate bending elements can be used
to solve the boundary value problem defined by
equations eqns. (4) and (5) to determine φ .

The rotations of the deformed plate from the
finite element code represent φ,y  and φ,z .

Numerically differentiating φ,y  and φ,z  provides φ,yy

and φ,zz  which are used in an equation for the normal
stress derived by Boley [3] and Pilkey and Liu [1]
from the thermal-stress compatibility equations.  The
normal stress is

    σ xx =−αET +ν∇2φ+ C1 x( ) + yC2 x( ) + zC3 x( ) (8)

The beam is considered to be traction free at the ends
such that

         σA∫ xx dA = σxxy dA = σ xxz dA = 0A∫A∫ (9)

Thus, using eqn. (8), the functions C1(x), C2(x), and
C3(x) can be defined with respect to the centroidal axis
as

                            C1 x( ) =
PT
A

(10a)

                  C2 x( ) =
IyM Tz − IyzM Ty

Iy I z − Iyz
2 (10b)

                 C3 x( ) =
Iz MTy − IyzM Tz

Iy Iz − I yz
2 (10c)

The coefficients Ci(x), i = 1, 2, 3 are linear in x since
the forces PT and the moments MTy and MTz are linear
in x; that is,
                 Ci x( ) = Ci

1 + xCi
2       i = 1,2, 3 (10d)

The axial force and moments are defined by

                   PT = αET −ν∇ 2φ( ) dAA∫ (11a)

                 MTy = αET −ν∇ 2φ( )A∫  z   dA (11b)

                 MTz = αET −ν∇ 2φ( )A∫  y   dA (11c)

If one is dealing with simply-connected cross-sections,
Green’s theorem and the boundary conditions of eqn.
(4) can be employed to reduce eqns. (11) to simple
linear expressions for the end forces that are similar to
eqn. (10d). However, eqns. (11) cannot be used in the
elasticity formulation if the cross-section is multiply
connected.  Additional boundary conditions for φ  must
be imposed.  The elasticity formulation just outlined
will henceforth be referred to herein as the
“thermoelasticity formulation.”  

The Airy stress function of eqn. (3a) is a linear
function of x, where φ 1 y,z( )  could be a family of yz-

intercepts for eqn. (3a) and φ 2 y, z( )  could be a family

of slopes through the yz-planes.  The biharmonic
expression of eqn. (5a) can now be solved in two parts
with the boundary conditions given by eqns. (4)
yielding solutions for φ 1 y,z( )  and φ 2 y,z( ) .  A

complete solution is obtained at any point along the
beam by multiplying the results for φ 2 y,z( )  by the x-

coordinate and adding φ 1 y,z( ) .

3. Strength-of-Materials Equations

The strength-of-materials equations for the end
forces and normal stress [1] are

                          PT
* = αET  dAA∫ (12a)

                      MTy
* = αET( )z  dAA∫ (12b)

                      MTz
* = αET( )y  dAA∫ (12c)

        σ xx =−αET + C1
* x( ) + yC2

* x( ) + zC3
* x( ) (13)

The eqns. (10a-d) for the thermoelasticity
coefficients Ci(x) are the same as the coefficients Ci

*(x)
for strength of materials if the end forces in eqns. (12a-
c) are substituted for the end forces in eqns. (11a-c).

4. Implementation

 A general-purpose finite element code was used to
solve the plate bending equations analogous to eqns.
(4) and (5).  In particular, a plate with clamped edges
and an arbitrary thickness was modeled with plate
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bending elements.  With this approach, the Laplacian
of the temperature distribution is used as the loading.
The integrals of eqns. (11) and (12) are evaluated,
determining the forces and moments.  The coefficients
Ci and Ci* in eqns. (10a-d) are calculated, and then
used in eqns. (8) and (13) to produce the
thermoelasticity and strength-of-materials normal
stress, respectively.

4.1 Examples

The temperature distribution varied in the
examples.  Five different temperature distributions
were used: cubic, exponential, logarithmic, quadratic,
and linear.  The equations for the temperature
distribution were not calculated from the heat equation.
These temperature distributions may have occurred in a
short period of time or in actively cooled beam
members.  The shape of the cross-section varied from
thin to thick with different geometric configurations.

The materials used in the examples were
polycrystalline metals and a fluorocarbon rubber [7].
Polycrystalline metals are inherently isotropic [8].  The
lowest Poisson’s ratio considered was 0.02, while the
highest was 0.499.  A Poisson’s ratio of 0.499 was
used because a value of 0.5 generated an error in the
general-purpose finite element code.  

The temperature distributions in these examples
were a function in only the z-direction.  The simple
functional dependence varied in only the z-direction,
which allowed for quick verification of results.
Rectangular shaped cross-sections were used because
they were the simplest to verify.  The origin of the yz-
plane was located at the centroid of the cross-section,
as shown in Figure 1.

5. Results

The effects of temperature distribution, material
properties and geometry on four of the six possible
stresses were explored.  

The normal stress results are compared in Table 1
by listing the percent difference between the
thermoelasticity and strength-of-materials results for
each temperature distribution at the various node points
depicted in Figure 1.  Contour plots of the normal
stress and percent difference between the
thermoelasticity and strength-of-materials results for
the cubic temperature distribution are shown in Figure
2. The effect of Poisson’s ratio is shown in Figure 1
by plotting the percentage difference between the
thermoelasticity and strength-of-materials results for
the cubic temperature distribution listed in Table 2.
The geometric effect of the cross-sectional surface on
the difference between the thermoelasticity and
strength-of-materials results are listed in Table 3 for the
peak normal stress and for the exponential temperature
distribution.

Table 1: Percentage difference between thermoelasticity
and strength-of-materials results for various temperature

distributions.

Node
Exp.
(%)

Cub.
(%)

Log.
(%)

Quad.
(%)

Lin.
(%)

1 0.68 0.38 0.05 0.10 0.00
6 11.6 11.7 2.91 4.17 0.00
9 6.38 5.61 1.24 1.85 0.00
12 12.4 4.65 0.57 0.57 0.00
17 13.8 12.1 2.32 2.32 0.00
20 3.34 5.89 1.57 1.57 0.00

Table 2: Percentage difference between thermoelasticity
and strength-of-materials results for the cubic temperature

distribution, for various Poisson’s ratios.
Location (Node Point)

Material 6
(%)

17
(%)

28
(%)

39
(%)

50
(%)

Beryllium 0.02 0.65 0.67 2.34 2.42 1.59
Chromium 0.21 8.24 8.73 31.6 31.5 20.7

Steel 0.27 11.7 12.1 44.0 43.9 28.9
Aluminum 0.345 16.7 17.3 62.6 62.5 41.1

Silicon 0.42 22.9 23.8 86.3 86.0 56.5
Rubber 0.499 31.7 32.8 119 119 78.0

6. Discussion

Various cross-sectional temperature distributions
were placed upon a rectangular beam. The exponential
distribution not only has a rapidly changing value, but
also has a similar curve for its Laplacian.  The
Laplacian of the cubic temperature distribution is linear
and the Laplacian of the logarithmic temperature
distribution is not rapidly changing. The Laplacian of
the quadratic temperature distribution is constant.  The
Laplacian of the linear distribution is zero; hence, the
Airy stress function is zero. The exponential
temperature distribution applied to the beam produces
the largest stress difference between the
thermoelasticity solution of this paper and the strength-
of-materials solution.  The cubic distribution has a
small difference.  The logarithmic and quadratic
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Figure 1: Percentage difference between
thermoelasticity and strength-of-materials results for

the cubic temperature distribution and node locations.
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distributions do not exhibit a significant difference.
There is no difference between the linear distribution
for the thermoelasticity solution and the strength-of-
materials solution.  

Poisson’s ratio and ∇2φare terms not contained in
the strength-of-materials formulation for the normal
stress in eqn. (8) but are in eqn. (3); thus, a significant
difference is expected.  As Poisson’s ratio increases in
Table 2, the amount of error increases, producing an
almost linear curve in Figure 1 when the values are
plotted at different locations in the cross-section of the
beam for the cubic temperature distribution, at one x-
location.  The remaining material properties are not a
significant source of difference in results because they
are contained in both the thermoelasticity and strength-
of-material formulations.

Table 3: Percentage difference at the peak normal
stress for the exponential temperature distribution, for

various geometries.

Geometry
Dimensions

(y-cm by z-cm.)
Percent Diff.

(%)

Thin 5 by 20 3.78
Ellipse 10 by 16 9.60
Rect. Z 10 by 20 11.64
Square 20 by 20 19.58
Rect. Y 20 by 10 19.88

As the cross-section becomes narrow in the
direction perpendicular to direction of temperature
variation, the percent difference decreases in Table 3.
The decreasing difference between the strength-of-
materials and thermoelasticity results in Table 3 can be
explained by examining the method used to obtain the
Airy stress function.  If the surface area allowed to
deflect in the plate bending problem that is used to
calculate φ  is narrow, the rotations created are small,
producing a small value for ∇2φ .  If the values
of ν∇2φ  are small in eqn. (8), the difference between
the two methods becomes insignificant.

7. Conclusions

The normal-stress theory proposed by Boley has
been implemented to a much higher degree than was
possible in 1954 with the aid of finite elements and
computers.  By using the finite element method,
arbitrary cross-sectional shapes are easily analyzed.
The effects of temperature distribution, temperature
magnitude, material properties, and geometry of the
cross-section have been investigated.

The type of temperature distribution resulted in a
significant difference in normal stresses obtained from
the thermoelasticity and strength-of-materials
formulations if the distribution has a rapidly changing
∇2T . Increasing Poisson’s ratio creates greater
difference in the stress for the two theories, simply
because strength of materials neglects this material
property.  The results from thermoelasticity approach
the results from strength-of-materials results as the
cross-sectional shape becomes thinner.

Overall, the results in this paper show that the
longitudinal normal stress can be calculated with
relative efficiency with the proposed theory at any
cross-sectional plane along the beam’s longitudinal
axis where Saint Venant’s principle is valid.
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Figure 2: Contour plots for stress σxx from
thermoelasticity and difference with strength-of-

materials results for the cubic temperature distribution.


